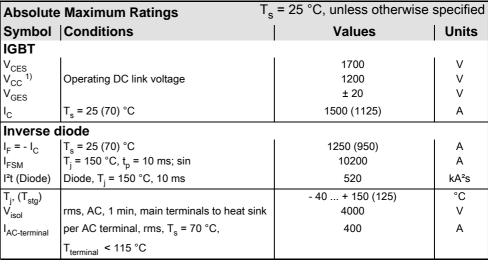
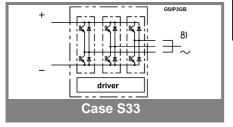

SKiiP 1513GB172-3DL


2-pack-integrated intelligent Power System

Power section SKiiP 1513GB172-3DL


Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request

Characte	eristics	T _s = 25 °C, unless otherwise specified							
Symbol	Conditions		min.	typ.	max.	Units			
IGBT									
V _{CEsat}	I_C = 900 A, T_j = 25 (125) °C; measured at terminal			1,9 (2,2)	2,4	V			
V_{CEO}	T _i = 25 (125) °C; at terminal			1 (0,9)	1,2 (1,1)	V			
r _{CE}	T _i = 25 (125) °C; at terminal			1 (1,4)	1,3 (1,7)	mΩ			
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$ $T_i = 25 (125) ^{\circ}\text{C}$			3,6 (216)		mA			
$E_{on} + E_{off}$	$I_{\rm C}$ = 900 A, $V_{\rm CC}$ = 900 V			585		mJ			
	$T_j = 125 ^{\circ}\text{C}, V_{CC} = 1200 ^{\circ}\text{V}$			863		mJ			
R _{CC+EE}	terminal chip, T _i = 25 °C			0,17		mΩ			
L _{CE}	top, bottom			4		nH			
C _{CHC}	per phase, AC-side			5,1		nF			
Inverse o	diode								
$V_F = V_{EC}$	I _F = 900 A, T _j = 25 (125) °C measured at terminal			2 (1,8)	2,15	V			
V_{TO}	T _i = 25 (125) °C			1,1 (0,8)	1,2 (0,9)	V			
r _T	T _i = 25 (125) °C			1 (1,1)	1,1 (1,2)	mΩ			
Ė _{rr}	I _C = 900 A, V _{CC} = 900 V			108		mJ			
	$T_j = 125 ^{\circ}\text{C}, V_{CC} = 1200 ^{\circ}\text{V}$			128		mJ			
Mechani	cal data								
M _{dc}	DC terminals, SI Units		6		8	Nm			
M _{ac}	AC terminals, SI Units		13		15	Nm			
W	SKiiP® 3 System w/o heat sinl	k		2,4		kg			
w	heat sink			7,5		kg			
Thermal characteristics (PX 16 heat sink with fan SKF16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc.IEC									
60747-15	1	ı	Ī		0.00	IZAAZ			
R _{th(j-s)I}	per IGBT				0,02	K/W			
R _{th(j-s)D}	per diode				0,038	K/W			
Z_{th}	R _i (mK/W) (max. values)	4 1	l 4	tau	1. ,	4			
$Z_{\text{th(j-r)I}}$	1 2 3 3,4 9,6 7	4 0	1 363	2 0,18	3 0,04	4 1			

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

20

1,4

30

210

5

85

0,25

11

0,04

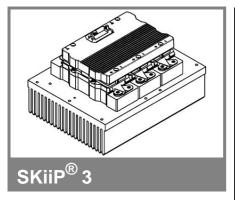
0,4

12

20

18

5,5


12

2,1

 $Z_{th(j-r)D}$

Z_{th(r-a)}

SKiiP 1513GB172-3DL

2-pack-integrated intelligent Power System

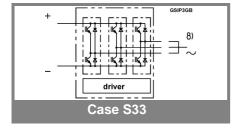
2-pack integrated gate driver SKiiP 1513GB172-3DL

Data

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute Maximum Ratings		T _a = 25 °C, unless otherwise specified			
Symbol	Conditions	Values	Units		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{i}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, rms, 2 s)	4000	V		
V _{isoIPD}	partial discharge extinction voltage, rms, $Q_{PD} \le 10 \text{ pC}$;	1500	V		
V _{isol12}	output 1 / output 2 (AC, rms, 2 s)	1500	V		
f _{sw}	switching frequency	9	kHz		
f _{out}	output frequency for I _{peak(1)} =I _C	9	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C		

Characte	eristics	(T _a = 25 °C)			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	380+34*f/kHz+0,00015*(I _{AC} /A) ²		mA	
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C_{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
tpERRRESET	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5 mA; 8 V corresponds to 15 V supply voltage for external components		1500		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	$(I_{analog} OUT = 10 V)$		1875		Α
T_tp	over temperature protection	110		120	°C
UDCTRIP	U_{DC} -protection ($U_{analog OUT} = 9 V$);	i	not mplemented	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

